STM32 Demo Board: Getting Started and Advanced Preparation

Essentials for Beginners

The development board may look simple, but many people are discouraged at the step of how to use it. Today, I’m here to teach you how to solve the problems of getting started with single-board computers (SBCs), taking the Orange Pi Zero 3 as an example. How many steps are generally needed to use an Orange Pi? First, prepare a USB Type-C power cable, a charger with at least 5V 2A , a memory card with a capacity of at least 8GB, and a Micro HDMI cable to connect to a monitor or TV to display information from the development board. Some Demo Boards may have DP or mini HDMI interfaces, or standard HDMI interfaces, and you will need to purchase the corresponding cables to match your development board.

custom Micro SDHC card 16GB
If your monitor doesn’t have a DP interface, you can opt for a DP-to-HDMI cable. However, as of now, there are still few Demo Boards without an HDMI interface. We also need to prepare a keyboard, and if you’re using a desktop like Windows, you’ll also need a mouse. If your Demo Board doesn’t have WiFi or Bluetooth, you’ll need to provide an Ethernet cable and access to the internet. Finally, you’ll need a working computer with a USB port. If your Demo Board has onboard eMMC, you won’t need to prepare a TF card. If your development board also has an M.2 SSD interface and you happen to want to use an SSD, you’ll also need to prepare an SSD.

After preparing all this hardware, the next step is to install the system. Installing a system on a development board is simpler than on a computer. First, find the official website of the development board and download the system you want to use onto your computer. Then you can proceed to install the system. There are several installation methods, which differ depending on which storage medium you want to install the system on, such as a memory card, eMMC, or SSD. Installing on a memory card is the simplest.

Here, pay attention to the protocols and sizes of the SSDs supported by the development board. There are two protocols: M.2 SATA SSD interfaces and NVMe SSD interfaces. In terms of size, they vary based on length with M.2 2230, 2242, and 2280 being the main sizes. You need to choose the SSD based on the protocols and slots provided by the development board.

Pay attention to the protocols and sizes of the SSDs supported by the development board. There are two protocols: M.2 SATA SSD interfaces and NVMe SSD interfaces. In terms of size, they vary based on length with M.2 2230, 2242, and 2280 being the main sizes. You need to choose the SSD based on the protocols and slots provided by the development board.

Flashing the system to the SSD is also done using the Ralink development tools, with the difference being the configuration file; just select PCI and the system installation is complete.

Once the hardware and software are ready, plug in the HDMI and power cables and wait for the system to boot. Note that some Demo Boards have a switch, which could be a selection switch or a push-button switch, so you should refer to the documentation for operation. Generally, the system will start automatically when powered, and if it doesn’t start automatically, check if the switch hasn’t been pressed.

Professional Player Essentials

Some commonly used tools in electronic design, which can also be considered essential, start with soldering. First is the soldering iron, which comes in temperature-controlled and adjustable temperature models. A temperature-controlled soldering iron is similar to this type where you plug it in and it directly reaches a fixed temperature.

The higher the wattage, the faster it heats up. An adjustable temperature soldering iron is similar to this type, generally adjustable between 200 to 500 degrees, because some chips have requirements for soldering temperature and cannot withstand high temperatures, so this adjustable temperature soldering iron has a broader range of applications. When using a soldering iron, you need a soldering iron stand, which comes in various types and can be chosen based on personal preference.

Soldering Iron

When using a soldering iron, you need to frequently clean the tip, which is where the soldering sponge comes in, similar to the one in the picture. Then there’s solder, which comes in leaded and lead-free varieties, with different tin content and wire gauges. I personally often use 63/37 tin with a 0.6mm diameter.

There’s also flux in the form of solder paste or rosin, solder paste is similar to the one in the picture. Rosin is similar to this type of desoldering pump. When soldering and needing to remove some solder, a desoldering pump is needed, which looks like the one in the picture. Then there’s the solder wick, which is this type of perforated board, but it’s basically disposable, and after soldering, it’s hard to clean and reuse.

Breadboard

A breadboard is a type of board where you can insert components and perform some debugging and testing.

Dupont Wire

Dupont wires are used to connect two endpoints of a test circuit, generally divided into male and female ends, with the female end being this type with holes and pins. Choose according to your needs, and the male end looks like this, which is also a commonly used small tool in testing circuits. You can insert Dupont wires or their corresponding sockets, and this is the socket corresponding to the pins.

Tinned Wire

Then there’s tinned wire, also known as enameled wire, which comes in different thicknesses and lengths, and is also commonly used in testing to connect two solder points.

Others

Tweezers are used as conductors for adding small precision components, and small surface-mount resistors and capacitors are commonly used. Flush cutters are used for trimming, similar to this type, generally for cutting the leads of some soft components. To strip the outer skin of wires, you need wire strippers, which are also commonly used.

A multimeter is also the most commonly used tool for measuring current, voltage, resistance, capacitance, and continuity, which can be said to be the most commonly used tool in electronic design.

Conclusion

Then there are some tools that are not commonly used at the beginning of electronic design, but can be added later when needed, such as hot air guns, needle-nose pliers, screwdrivers, some fixtures, heat shrink tubes, regulated power supplies, oscilloscopes, and logic analyzers. Basic electronic design may not need these for the time being.

This article introduces how to choose and use STM32. It is hoped that through the introduction in this article, beginners can understand the basic concepts and entry guide of STM32 for subsequent learning and application. If you don’t understand embedded systems, come to me. Thank you, everyone.

SK Hynix’s NAND FLASH

SK Hynix’s NAND FLASH Market Share to Exceed 20% for the First Time

SK Hynix’s global NAND flash memory market share is expected to surpass 20% for the first time this year. SK Group Chairman Chey Tae-won has decided to take personal charge of the NAND business, which is expected to accelerate the process of narrowing the gap with market leader Samsung Electronics.Industry insiders stated on November 18th that SK Hynix’s global NAND market share, calculated by sales (according to IDC statistics), has increased by more than 10 percentage points over the past four years, growing from 11.7% in 2020 to 22.5% in the second quarter of this year. Although SK Hynix acquired Intel’s NAND division and launched Solidigm in 2021, the expansion of its market share was not as rapid as anticipated, rising from 13.7% in 2021 to 19% in 2022, but almost stagnating at 19.2% last year. The semiconductor economic downturn had a significant impact on Solidigm’s ongoing deficits.
SK Hynix’s NAND FLASH
Solidigm has steadily reduced its deficits and successfully turned a profit in the second quarter of this year (net profit of 7.86 billion won). Due to increased investment in AI data centers, the demand for high-capacity enterprise SSDs (eSSDs) has surged, and Solidigm’s competitiveness in this market has been rewarded. Only Samsung Electronics and Solidigm possess quad-level cell (QLC) NAND technology. NAND is categorized into SLC, MLC, TLC, and QLC based on data storage methods. Compared to SLC with the same cell, QLC can store four times more data, easily achieving high capacity and improving production cost efficiency.Due to sluggish demand in PCs and mobile devices, SK Hynix’s NAND shipments in the third quarter decreased compared to the previous quarter. However, profitability was maintained at a level similar to the second quarter because the average selling price (ASP) of high-value eSSDs increased by about 10% from the previous quarter. eSSDs accounted for more than 60% of SK Hynix’s NAND sales in the third quarter.Thanks to the continued strong demand for eSSDs, SK Hynix’s annual NAND market share this year is expected to exceed 20% for the first time. During a conference call to announce the third-quarter results, SK Hynix stated, “Although the NAND market share calculated by volume may decrease this year, we anticipate an increase in the market share calculated by sales compared to last year.”SK Hynix is poised to accelerate the reduction of the market share gap with Samsung Electronics, whose NAND market share is in the mid-30% range. SK Hynix aims to increase its market share with a focus on high-value products such as high-capacity eSSDs. The company recently launched a new eSSD product capable of achieving 122TB, the largest capacity for NAND solutions. There are also predictions that with Chairman Chey Tae-won recently taking over as the chairman of the Solidigm board, the NAND business will be further strengthened.

HUAWEI eKitStor Xtreme 200E SSD Prospective Evaluation and testing

Xtreme 200E SSD,Today’s topic is about Huawei’s new solid-state drive (SSD). We have obtained a prototype of Huawei’s SSD that has not yet been released (it will be officially launched at the end of November). However, there is essentially no difference between this engineering sample and the final version, except for the serial number. It’s a 1TB single-sided chip SSD. Let me tell you, getting this SSD was quite an effort. Let’s see what secrets are hidden under this label. It’s just a regular sticker and does not serve any cooling function.


For the 1TB capacity, there are two chips and one controller, which is a standard DRAM-less solution. It’s not easy to distinguish the manufacturer of the chips from the numbering. Without further ado, let’s compare it with the Zhitai Ti600, which is also a popular SSD sold online. Through comparison, we can confirm that Huawei’s new SSD definitely does not use the Lian Yun controller, and it is even less likely to use controllers from Samsung, Phison, or Silicon Motion. So, there should be only one answer in our minds.

Warranty

Nice, in terms of warranty, Huawei offers a 400TBW warranty for the new SSD, coincidentally, the Zhitai Ti600 also offers a 400TBW warranty. It is also unlikely that Huawei would use storage chips from Micron, Samsung, or Kioxia. So, the answer in front of us might be the one we all have in mind. In terms of price, I estimate that it should not be too expensive.

Testing

The SSDs tested together are: Kioxia RC20 1TB and Western Digital SN850 1TB. First, we clarify that this test will not do Huawei’s SSD any injustice. Both SSDs tested alongside are flagship SSDs with cache. Looking at the basic parameters, the PCIe-4.0 x 4 full-speed is flawless, with sequential read speeds of 7100 and sequential write speeds of 6300, which is a pretty good performance. Digital novices like to focus on this parameter, and the commonly used 4k91mb and 286mb performance is basically enough for daily use. This data is also basically consistent with Zhitai’s Ti 600, and we need to look at the 200GB+ mixed data write test.

SSD Cache

Why test 280GB? Because I initially thought it would have a 200GB cache, like the Zhitai Ti600. But after testing, the speed did not drop, and the cache was quite large. We directly increased it to 280GB to test the cache. Huawei’s SSD has a full-disk simulated cache of 250GB, and data exceeding 250GB will experience a decrease in transfer speed, and it will experience a speed drop. A 250GB simulated cache in an empty state is indeed very large, and it is completely sufficient for our daily home use. However, it is still a QLC chip after all.

After the Huawei SSD is half full, the mixed test shows that the 200E SSD only lasted 20GB before the cache was released, which is a common issue with QLC DRAM-less SSDs. That’s just how it is. Don’t understand? Let’s look at the actual performance. When we control the disk and copy 200GB of data, the read speed is relatively stable, basically around 3.6GB, and the entire copy time is around 55 seconds. The 200GB is copied, very fast, no problem at all.

Application Scenarios

If your SSD is already half full, and you copy files again, you will find that it is very easy to release the cache at this time, and the speed will be similar to your home mechanical hard drive when the cache is released. Therefore, the Huawei 200E SSD, because it is equipped with QLC chips, although its controller is strong, the storage chips are too ordinary. The most suitable group of people is ordinary home users who do not store too many things, and the 1TB capacity can be used for several years. So, this SSD is no problem at all, so it feels like the storage chips are holding back the controller.

Self-developed Chips

However, considering the current market environment and what tricks Trump might pull after he comes to power across the sea, no one knows what kind of environment it will be after Trump comes to power. We should encourage any brand or group in China that wants to do something from 0 to 1. Products need to be developed one by one, and the market needs to be developed bit by bit. We also hope that Huawei will release some PLC or higher-performance SSDs in the future, after all, the step from 0 to 1 is the most critical. This is what I mentioned at the beginning of the article, that the price of this SSD should not be too expensive. So, above is the prospective review of Huawei’s new 200E SSD. If you have any opinions on Huawei’s new SSD, you can also leave a comment. I am Teacher Alex, see you next time.

chip sales by area

The changes in the semiconductor industry in 2024 are greater than the sum of the changes over the previous five years combined.

In 1995, Nvidia’s first chip, the NV1, faced numerous setbacks, leaving the company with only 30 days of working capital. By 2024, Nvidia’s Blackwell GPU was in such high demand that the company’s market value had surpassed $3.6 trillion. Also in 1995, Intel held over 75% of the global PC processor market, establishing its leadership in the personal computer market. Fast forward to 2024, Intel’s stock price has plummeted nearly 60% since the beginning of the year, with its market value dropping to over $80 billion, marking the first time in three decades that it has fallen below the $100 billion threshold. The changes in the market values of these two semiconductor giants are a microcosm of the current semiconductor landscape.There is a saying that goes, “People tend to overestimate the changes that happen in a year, but underestimate the changes that happen in five years.” Looking back, the changes in the semiconductor industry in 2024 have been greater than the sum of the changes over the previous five years. 2024 will be a turning point for the semiconductor industry. Why do we say that? Because, as an industry, the semiconductor sector is inseparable from the basic characteristics that define it: division of labor, products, and services. And products like computers and chips cannot be separated from the science behind them. The industry and science are interdependent, and even before the 1970s, the industry was clearly dependent on science. (The controversy over the Silliman affair was a watershed in the relationship between science and industry.) The significant changes in the semiconductor industry this year are the result of a three-way tug-of-war between technology (science), policy, and the market.

01 The Transformation of Semiconductor Companies

In 2024, there have been many news items that have stimulated the nerves of industry insiders. The most prominent is still the surging market value of Nvidia. Microsoft and Apple have been the two companies with the highest market value in the world since 2010. Although the two have been “entangled” in the ranking of “U.S. stock market leader” for more than 10 years, no one else has replaced them. On June 18, 2024, local time, Nvidia’s stock price rose by 3.51%, closing at $135.58, with a total market value of $3.335 trillion, surpassing both Microsoft and Apple to become the company with the highest market value in the world. This is a change that affects the whole world, such as in August 2011 when Apple first defeated ExxonMobil to win the title of the world’s most valuable company, which was also a symbolic moment for technology companies to defeat traditional oil companies. And Nvidia becoming the world’s most valuable company represents a shift in the focus of technology industry development. Traditional fields represented by Apple, such as consumer electronics and software, have led an era in the past, while Nvidia’s first place means that the focus of technology industry development is accelerating towards the AI field. In addition, on November 8th of this year, Nvidia replaced Intel as a component of the Dow Jones Industrial Average. S&P Global stated that the adjustment of components is to ensure that the index has a more representative semiconductor exposure. In fact, this is also proof: AI has truly entered the commercial track, and the impact of AI on the semiconductor industry is growing. In the semiconductor industry in 2024, in addition to the continuously increasing upper limits, there are also constantly refreshed lower limits. There are two giants in the semiconductor industry, which are well-known to everyone: Intel and Samsung. Since 1992, Intel has been the world’s largest semiconductor manufacturer and has been leading for 25 years. Although Samsung’s chip business surpassed Intel for the first time in 2017, it is still a constant struggle for the leading position. This year’s two chip giants seem to be stuck in a “swamp,” constantly struggling. As mentioned earlier, Intel’s market value has fallen due to its continuously losing performance. In the second quarter of this year, Intel’s loss reached $1.6 billion, far higher than the loss of $437 million in the previous quarter. And the latest third-quarter financial report announced its largest quarterly loss in its 56-year history – $16.6 billion (about 118.2 billion yuan). Samsung is also in a difficult situation in 2024. In October, Samsung announced that its third-quarter operating profit was about 91 trillion won, lower than the market expectation of 115 trillion won. Jeon Young-hyun, head of Samsung’s electronic device solutions department, also issued an apology, stating that the company’s performance did not meet market expectations, causing people’s worries about the company’s basic technical competitiveness and the future. As the senior management leading the company’s operations, they will take responsibility. (It seems that South Korea has also learned the apology system from Japan.) Similarly, the stock market reflects the company’s situation. Samsung’s stock price fell to 51,700 won on November 14th, local time, a record low since June 24, 2020. If this trend continues, Samsung’s stock price for the whole year will be the worst performance in over 20 years.

02 Europe’s “Decadence”

The changes in 2024 are not only the obvious corporate rankings but also regional changes. Amid global government attention to the semiconductor industry, there is a region where semiconductors have been declining throughout the year – Europe. Many people may not have noticed, but the data from WSTS cannot be deceived.
chip sales by area
We have calculated the chip sales announced by WSTS since January of this year, and so far, the chip sales in Europe for the whole year have been negative year-on-year. Of course, there is also Japan, but Japan’s year-on-year growth has slightly turned positive in August and September. The European semiconductor industry fell into a weak state in 2024. The “three giants” of the European semiconductor industry: Infineon, STMicroelectronics, and NXP, all have poor revenue. Infineon’s revenue in the third quarter reached 3.702 billion euros, a year-on-year decrease of 9%. Currently, Infineon has lowered its performance outlook for 2024, adjusting this year’s revenue expectation to 15.5 billion to 16.5 billion euros, lower than the previous expectation of 16.5 billion to 17.5 billion euros. STMicroelectronics’ net revenue in the third quarter was 3.25 billion US dollars, a year-on-year decrease of 26.6%. NXP’s revenue decreased by 5.4% to 3.25 billion US dollars, slightly lower than the analysts’ expected 3.26 billion US dollars. Nowadays, Europe’s automotive and industrial markets have already shown negative growth.
From a more specific level of observation, the performance of optoelectronics and discrete devices is not satisfactory, the MCU market shows a shrinking trend and has shown negative growth, and the analog market has also experienced a long period of decline.

03 Tracing Back to the Source

The only constant in the world is change itself. This year, there have been so many changes in the semiconductor industry. Let’s trace back to the root causes and examine policies, markets, and technology.

Revenue of the 2024 top 10 global semiconductor companies
2023 ranking 2024Q3 ranking Company Q3 revenue in 2024 Year-on-year revenue
5 1↑ NVIDIA 300.4(Q2) 122.40%
6 2↑ SKHynix 116.75(Q2) 124.79%
9 3↑ APPLE 857.77 4.87%
2 4↓ Samsung 560 7.35%
1 5↓ Intel 132.84 -6.17%
4 6↓ Broadcom 130.72 47.27%
3 7↓ Qualcomm 93.9 8.77%
7 8↓ AMD 68.19 17.57%
10 9↑ Texas Instruments 41.51 -8.41%
8 10↓ STMicroelectronics 32.51 -26.63%
Source: Financial Report Semiconductor Industry Vertical and Horizontal Tabulation

The impact of policies on the industry is self-evident. At the policy level, the United States, Europe, Japan, South Korea, and Vietnam have all released semiconductor-related policies in the past two years. However, looking at the current situation, the implementation of the semiconductor policies in the United States and Europe has not been significant.

So far, more than half of the $52 billion subsidy in the U.S. Chip Act has been allocated, with over $35 billion granted to about 26 projects. Yet, the funds seem to be slow in coming, with Intel constantly complaining, “It’s been two years, and we haven’t seen a penny.”

Policy

The U.S. Chip Act is even more precarious after Trump’s potential return to office next year, as he is known to be opposed to the act. In interviews, Trump has bluntly stated, “It’s terrible.” The European Chip Act has not made any waves either. Proposed in 2022, there are not many factories being built in Europe, and Intel’s project has not even started. However, it is important to note that the Chip Act has played a role in attracting investment without actual capital. Companies like Intel, TSMC, Samsung, Micron, GlobalFoundries, and Amkor have already begun constructing factories in various regions of the United States due to the subsidies from the Chip Act. Even if the timeline for financial assistance is extended or the subsidies are canceled, it is unlikely that the partially constructed fabs will become abandoned projects. It can be said that for semiconductor companies, building factories in the United States is already an inevitable action. Although the Chip Act has not been fully implemented and Trump denies its effectiveness, there is no doubt that he supports the repatriation of advanced manufacturing to the United States. This is why, when looking at Intel, we also believe that Intel will not be as bad as it seems. Despite Intel being constantly criticized, we cannot ignore its significant role on the geopolitical stage and as one of the U.S. government’s chips in the semiconductor industry and foreign policy strategies. When considering Intel’s prospects, we must not overlook the elements of U.S. strategy and geopolitics. The semiconductor industry now occupies an important strategic position, which is common knowledge. Regardless of whether it can reach the extreme 3nm process, globally, there are only three companies capable of manufacturing advanced process chips: TSMC, Intel, and Samsung. A significant part of the U.S. Chip Act’s plan is directed towards Intel’s construction of two large factories in Arizona and the building of two more factories in Ohio. Therefore, Intel’s future is still full of Highlights. It is not appropriate to directly assume that it will “decline to the end.”

Market

Why has the term “involution” started to be used domestically in recent years? It is because the pace of technological innovation has slowed down, and with the impact of the three-year pandemic, China’s economic development speed has also slowed down under various pressures, leading to “involution.” The “second curve” theory believes that industrial development has a life cycle, and any growth curve is a parabola that rises and then falls. The secret to sustained growth is to start a new growth curve before the inflection point appears, thus forming a continuous improvement and development trend with the new and old momentum in sequence. We are now in the depression period of the last round of technological and industrial revolutions. To make the economy prosperous again, a new round of technological and industrial revolutions must be ignited.This is the inflection point brought by the cycle. The new round of explosion is undoubtedly in AI, which is also a consensus among many industry insiders.

Tech

AI brings new growth points to the market, with many technologies hidden under AI. Above AI, we need to see the development of technology. The outbreak of AI this time is undoubtedly driven by technology. The emergence of GenAI has been brewing for a long time. And this outbreak of AI has driven other technologies that were brewing. The first representative is: TSMC’s advanced packaging process, CoWoS. The two most concerned products in the semiconductor industry: GPU, HBM, both of these products rely on advanced processes to be produced. And TSMC’s CoWoS packaging plays a very key role, so that some people have begun to jokingly call “TSMC will be the world’s first packaging and testing factory.” Here, the packaging and testing, which originally belonged to the back-end process, has shown a clear trend of front-end. And in the process of HBM suppliers continuously improving the stacking density, the interconnection between the fifth-generation HBM (i.e., HBM4) and the logic layer in the future will be jointly completed by storage giants and foundries. According to SK Hynix, HBM4 will greatly change the industry’s perception of DRAM as a “universal chip,” turning it into a customized storage special process chip. In this process, the related technical know-how will be jointly undertaken by foundries and storage factories, which is also the meaning of TSMC’s “Foundry 2.0” plan this year. The second representative is: the architecture competition, that is, the market competition between x86 and Arm, RISC-V. This year, it is obvious that the market share of Arm architecture chips is increasing. The x86 alliance has made it very clear not long ago: face to face. Although it seems to be a change in the market among the three architectures at first glance, it is actually a thirty-year-long competition between CISC (Complex Instruction Set) and RISC (Reduced Instruction Set), these two chip design philosophies. This competition is essentially an extension of the development of computer architecture as a “science and technology” in the “industry” field. The emergence of AI has given these two design philosophies more application scenarios. From the current point of view, the architecture under the RISC architecture (Arm, RISC-V) indeed has an innate advantage because it has the low power consumption and high energy efficiency that AI naturally needs. This also means that Arm may one day achieve a higher market share, which is driven by both technology and the market.

MLC 10000 write cycles, TLC 3000 to 5000 write cycles.

MLC Vs TLC, Is MLC Better Than TLC for SD Card?

MLC Vs TLC NAND Flash Memory Card

MLC Vs TLC,An SD card’s cost and storage are only part of the story. For essential data, understanding the NAND flash type—MLC or TLC—matters. These types affect speed and durability. This article explores them, helping you make the best choice.

MLC Vs TLC, Overview of MLC and TLC

In SD storage, the choice between MLC Vs TLC NAND flash impacts your card’s performance, lifespan, and cost. These flash types represent different data storage approaches, offering options tailored to specific user needs.

MLC 10000 write cycles, TLC 3000 to 5000 write cycles.

What is a Multi-Level Cell?

MLC, storing two bits per cell, offers a balance of speed and durability. This type works well for users needing moderate performance without a premium price.

Why MLC is Beneficial for SD Cards?

  • Enhanced Durability: With fewer bits per cell, MLC wears down more slowly, making it ideal for those needing consistent performance.
  • Affordable Quality: Though pricier than TLC, MLC is more affordable than high-end options, striking a nice balance for value-focused users.
  • Fast Performance: MLC’s read and write speeds often outperform TLC, supporting faster data handling for larger files.

MLC’s Downsides

  • Higher Cost: MLC isn’t as budget-friendly as TLC, which may not suit everyone.
  • Moderate Storage Density: MLC’s lower bit density per cell limits storage capacity compared to TLC.

Understanding TLC NAND Flash

TLC stores three bits per cell, making it an economical choice with high storage potential. It’s renowned for consumers looking for substantial storage without needing professional-grade speed.

Advantages of TLC in SD Cards

  • Budget-Friendly: TLC’s lower production cost leads to cheaper SD cards, ideal for everyday users.
  • Larger Capacity: Higher bit density per cell means more storage, perfect for extensive multimedia files.
  • Acceptable Speed for General Tasks: While slower than MLC, TLC’s performance is sufficient for daily use.

TLC’s Drawbacks

  • Shorter Lifespan: Increased density causes more wear, affecting durability in heavy-use settings.
  • Lower Speed: TLC’s read/write speeds can be slower, noticeable for data-heavy tasks.
  • Potential Data Loss: Storing three bits per cell can lead to gradual data degradation, though error correction assists in maintaining data integrity.

MLC vs TLC NAND Flash Memory: Key Differences Between

MLC Vs TLC cards differ mainly in cost, lifespan, and speed. Let’s break it down for clarity.

Cost: Affordability and Value

TLC cards are usually more affordable than MLC cards. This is because TLC can store three bits of data per cell, which allows for higher storage density and lower production costs. As a result, you’ll often find TLC cards offer more storage for a lower price.
In contrast, MLC cards store only two bits per cell, which requires more cells for the same amount of data. This raises the cost, making MLC cards more expensive. But this higher price brings better performance and durability. If you need a cost-effective option for light use, TLC is good, but MLC is a better choice for long-term performance.

Life Cycle: Durability

In terms of durability, MLC generally outlasts TLC. MLC cards wear less over time since they store fewer bits per cell. TLC cards, on the other hand, put more strain on their cells due to storing three bits per cell, which can lead to quicker wear. If you’re using the card for tasks like photography or video recording, where you write data frequently, MLC is more durable. TLC works just fine for lighter use, but MLC is the better option for long-term, heavy use.

Speed and Performance: Efficiency and Reliability

When it comes to speed, MLC cards are faster than TLC cards. Since MLC stores fewer bits per cell, it can quickly read and write data. This is especially useful for high-demand tasks like transferring large files or recording video. MLC cards maintain consistent speed even when the workload increases. While fine for everyday tasks, TLC cards might slow down during intensive use, especially for 4K video recording. If you’re working with demanding applications, MLC is the better choice for speed.

Relationship Between NAND Flash Types and Memory Cards

In SD and MicroSD cards, NAND flash types—categorized as SLC, MLC, and TLC—shape factors like speed, durability, and storage. Each type has specific advantages designed for different demands.

Impact on Speed and Performance

  • SLC (Single-Level Cell): Fastest and most durable, ideal for high-performance applications like servers or professional cameras, but expensive.
  • MLC (Multi-Level Cell): Balanced speed and cost, good for consumer electronics like DSLRs and high-end smartphones. It’s slower than SLC but offers a good compromise for most users.
  • TLC (Triple-Level Cell): Slowest, best for everyday use like storing photos or music. It’s affordable and provides large storage, but performance can degrade under heavy use.

For example, if recording a 4K video, MLC or SLC would be ideal, while TLC works for lighter tasks.

SLC VS MLC VS TLC Impact on Capacity

  • SLC: Limited capacity but offers the best performance and durability.
  • MLC: Offers a balance between storage and performance, typically found in mid-range devices.
  • TLC: High storage density, making it the most affordable option, but with slower performance, especially in large capacities.

TLC cards provide more space at a lower price but may perform slower than MLC, which strikes a balance.

Future Developments in NAND Flash Technology and Implications for SD Cards

The NAND flash field is evolving rapidly, with QLC improving storage and performance. As MLC and TLC are replaced by QLC, SD cards show clear advantages in cost, capacity, and efficiency.

QLC: More Storage at a Lower Cost

QLC technology, storing four data bits per cell, provides higher capacity for SD cards. This is a win for consumers, especially those handling large files like videos or photos, as it means lower prices per storage unit. However, QLC’s design does lead to faster wear, making it less ideal for frequent heavy use.

Looking Ahead: PLC in Development

With QLC mainstream, research is now focused on PLC (Penta-Level Cell), which could hold even more data. While still experimental, PLC may soon offer larger capacities and lower costs.

Lower Costs for Consumers

Each advancement in NAND technology leads to more affordable SD cards, which is good news for anyone with high data needs.

Enhanced Controllers to Boost Performance

Newer controllers and firmware updates are designed to improve the performance of high-density NAND types like QLC, helping them run faster and last longer.

Different Options for Different Needs

Consumers will see more tailored choices in SD cards. SLC remains best for durability, while QLC and PLC will serve those looking for more affordable storage.

MLC Vs TLC Conclusion

Factor

MLC (Multi-Level Cell)

TLC (Triple-Level Cell)

Cost

Moderate

Lower

Life Cycle

Higher durability

Lower durability

Speed

Faster read/write

Moderate speed

Capacity

Moderate

Higher

Ideal For

High-use, performance-focused tasks

General use, high capacity needs

Choosing between MLC and TLC NAND flash depends on balancing factors like speed, durability, and budget. MLC is perfect for heavy tasks with its performance and durability.
TLC is budget-friendly and offers more space, making it ideal for general use. As technology advances, SD cards are likely to get improved, providing users with more specific choices.

QLC VS TLC NAND FLASH

QLC VS TLC, Is QLC Better than TLC for SSD?

QLC VS TLC Selecting an SSD can be tricky, with choices like QLC and TLC NAND flash. Each type offers specific benefits for different needs.
This guide explains how each technology affects cost, speed, and lifespan. We’ll also see how these types impact memory cards, including microSD and SD options.

QLC VS TLC NAND Flash: An Overview

TLC VS QLC

NAND Flash Technology

NAND flash memory keeps data even without power. SSDs depend on this memory type for faster, more reliable, and energy-efficient performance. The performance of NAND flash depends on how many bits each memory cell stores. This factor influences the speed, lifespan, price, and storage capacity of the flash.

QLC Explained

Quad-Level Cell stores 4 bits per cell, meaning more data in less space. This boosts capacity, making it cheaper than other types. However, this comes with reduced durability and slower performance, meaning QLC is best for storage-heavy tasks where speed isn’t a top priority.

TLC Explained

Storing 3 bits per cell, Triple-Level Cell balances price and performance. It’s more durable and faster than QLC, making it ideal for everyday computing. Though it won’t match the performance of MLC, TLC is a solid choice for most users.

Other NAND FLASH TYPES

  • Single-Level Cell: Stores 1 bit per cell; offers the fastest speed and highest durability but is expensive and has lower capacity.
  • Multi-Level Cell: Stores 2 bits per cell; balances speed, endurance, and cost, suitable for moderate use.
  • Penta-Level Cell: Stores 5 bits per cell; expected to offer high capacity at a low cost but with slower speeds and lower durability.

Why Are QLC and TLC Popular in SSDs?

QLC VS TLC? QLC is perfect for users looking for lots of storage without breaking the bank, ideal for media storage or casual gaming. TLC works well for personal and professional needs, offering reliability and a good price-performance ratio.

QLC vs TLC: Key Differences

Cost Comparison

QLC SSDs are often affordable due to their higher data density. It makes them a perfect option if you need a lot of storage but can compromise on speed or durability.
TLC SSDs cost more but offer better overall performance. While they store less data per cell than QLC, they give you better speed and endurance. They still represent good value when compared to older SSD types.

Life Cycle and Endurance

TLC SSDs are built to last longer than QLC. They offer 3,000 to 5,000 Program/Erase (P/E) cycles. This higher endurance makes it suitable for heavy data writing and reading tasks.
QLC, with 4 bits per cell, only manages around 1,000 to 1,500 P/E cycles, meaning it wears out faster.

Speed and Performance

When comparing speed, TLC SSDs generally have the edge over QLC SSDs. With fewer bits per cell, TLC provides faster read/write speeds. It translates into quicker boot times, file transfers, and smoother performance for most tasks. TLC also performs better when handling large, sustained writes, vital for gaming or video editing applications.
While offering good speeds for lighter tasks, QLC SSDs can struggle when the drive gets near capacity or under heavy workloads. Their speed may drop as the drive fills up, making them less ideal for consistent, long-term use.

Use Cases: Who Should Choose QLC or TLC?

For high-performance needs, such as video editing or large-scale gaming, TLC is a better fit. It offers the speed and durability required for demanding tasks.
QLC is a good choice for those who need more space on a budget. It’s great for storing media files, games, or documents where performance isn’t a major concern.

The Relationship Between NAND Flash Types and Memory Cards

The kind of NAND flash in SD and microSD cards impact performance and lifespan. SLC, MLC, TLC, and QLC each influence speed, durability, and storage capacity in various ways.

The Effect of NAND Flash on Performance

NAND flash affects both speed and lifespan in memory cards. There are four types: SLC, MLC, TLC, and QLC, each designed for specific uses.

  • SLC provides the fastest performance and extensive durability, making it perfect for professional use.
  • MLC balances speed, endurance, and cost, suitable for full HD recording.
  • TLC is cheaper and offers more storage but sacrifices some speed and longevity. It works for casual users.
  • QLC offers extensive storage for a lower cost, but its slower speeds and reduced durability make it less effective for intensive tasks.

Storage Capacity and NAND Flash QLC VS TLC

Memory card storage capacity is linked to the NAND flash type. More bits per cell allow for higher storage in the same space.

  • SLC provides lower storage capacity per cell for tasks requiring speed and durability oversize.
  • MLC, TLC, and QLC offer larger capacities by storing more bits per cell. As you move from MLC to QLC, storage increases, but so do the sacrifices in durability and speed.
  • A high-capacity TLC card can match an MLC card in storage but at a lower price and with some performance trade-offs. QLC cards offer the most storage at the lowest cost but are less durable and slower.

Future Developments in NAND Flash for SSDs

3D NAND stacking is a major development in NAND flash technology, allowing storage capacity to grow without increasing size. This technique helps QLC overcome endurance issues, making it faster, more durable, and reliable while maintaining a low cost.
With continued improvements, QLC will be better equipped for high-demand applications. It will soon compete with TLC and MLC for enterprise storage and gaming.
Looking ahead, NAND flash will aim for more efficiency and reliability at lower costs. As storage needs rise, especially in cloud and data-driven fields, customized solutions will be more common. QLC will likely dominate the consumer market, while TLC and MLC will remain the preferred choice for professionals.

Conclusion

Criteria

QLC

TLC

Cost

More affordable

Slightly more expensive

Endurance

Lower lifespan (fewer P/E cycles)

Better endurance

Speed

Slower, especially with large writes

Faster read/write speeds

Best Use

Budget SSDs, large storage

Performance-focused SSDs for workstations, gaming, etc.

Capacity

Higher storage density

Lower density compared to QLC

In a nutshell, QLC is suitable for those who need budget-friendly storage for everyday use. On the other hand, TLC offers faster speeds, better performance, and high durability for heavy tasks. Choose based on your specific needs.

TLC VS QLC

Which is Better: TLC vs QLC?

TLC vs QLC: A Quick Overview

TLC VS QLC, TLC and QLC are types of NAND flash memory. They store data in cells, with each cell holding multiple bits. The more bits in a cell, the more storage capacity, but can slow down performance and reduce durability.

  • Triple-Level Cell holds 3 bits per cell, balancing capacity, price, and speed. It’s commonly used in SSDs and memory cards for general consumers.
  • Quad-Level Cell stores 4 bits per cell, offering larger storage at a lower price. But, this increased capacity comes with some trade-offs in performance and longevity.

This write-up compares both, showing you which is best for your device—like an SSD, SD card, or laptop upgrade.

Key Differences Between TLC and QLC

TLC and QLC flash storage vary in many ways, from cost to capacity and speed.
QLC VS TLC NAND FLASH

Cost

TLC and QLC NAND flash have a notable cost difference. With QLC storing four bits per cell, it’s generally cheaper than TLC, which only holds three bits. This extra data capacity in QLC lets manufacturers reduce production costs, allowing more storage in the same space.
However, QLC’s lower cost often means reduced speed and durability. For those seeking affordable, high-capacity storage, like for media libraries, QLC can be a solid choice. But, for high-performance or long-lasting storage, QLC’s compromises may not be worth the savings.

TLC VS QLC Lifespan and Durability

With three bits per cell, TLC is more durable than QLC, which holds four. This extra bit in QLC causes cells to wear down faster under frequent use. TLC handles more write-and-erase cycles and performs well under heavy tasks like gaming or workstation applications. QLC, in contrast, is ideal for data that is mostly read and rarely changed.

TLC VS QLC Speed and Performance

TLC tends to outperform QLC in speed and performance. It’s faster because it uses three bits per cell, making data processing quicker with less voltage consumption. This is especially noticeable in tasks like video editing, gaming, and software development, where frequent data writing is required.
TLC’s faster write speeds enhance both efficiency and overall experience. On the other hand, QLC is slower and might not handle demanding tasks well, but it works fine for basic storage like photos or media files.

TLC VS QLC Storage Capacity

QLC drives are great for those who need large storage. With the ability to store four bits per cell, it achieves high density and offers massive storage capacities, often reaching 4TB or more, all at a lower price than comparable TLC drives. This makes QLC a strong contender for archiving and backup needs.

Other Differences to Keep in Mind

  • Power Use: TLC consumes more power because it stores three bits per cell. For most users, the difference isn’t significant.
  • Heat: TLC generally creates less heat because it handles more write cycles without issue. QLC, due to its denser cells, may struggle with heat over time.
  • Endurance and Use: TLC is more durable and works better across various tasks. QLC is ideal for light tasks like storing large files or backups where frequent writes aren’t required.

Relationship Between NAND Flash Types and Memory Cards

The performance of SSDs, SD cards, and microSD cards depends largely on the NAND flash type. SLC, TLC, and QLC each have their unique effects.

MicroSD Cards

  • TLC Flash: More durable and faster, making it ideal for tasks with frequent writes like 4K video recording and high-speed photography. It offers better performance and reliability.
  • QLC Flash: More affordable but slower and less durable. Best for storage-heavy tasks like media backups or long-term storage, but not suitable for high-performance needs.

SSDs

  • TLC Flash: Offers a balance between price and performance, with solid read/write speeds and better durability than QLC. Great for general computing, gaming, and applications.
  • QLC Flash: Cheaper but slower and less durable. Best for more storage needs like data archiving or home servers, but not recommended for high-demand tasks.

SD Cards

  • TLC SD Cards: Best for 4K video or high-resolution images, offering fast write speeds and good durability for professional use.
  • QLC SD Cards: Suitable for basic storage needs, like casual photography or personal use, where speed and frequent writes aren’t crucial.

TLC vs QLC: A Quick Comparison

Best Use Cases for TLC

TLC is ideal for users who need a balance between performance and reliability. It handles fast data access and long-term durability well, making it great for demanding tasks.
For gamers, TLC’s fast read and write speeds ensure smooth gameplay and quick load times. Professionals working on video editing or 3D rendering will find TLC’s ability to manage frequent large data transfers helpful. Content creators can rely on TLC for large, high-resolution files.
While TLC is more expensive than QLC, its consistent performance and durability make it a good investment if you need reliable storage for heavy tasks.

Best Use Cases for QLC

QLC memory caters to users needing substantial storage on a budget. It provides plenty of room but sacrifices speed, making it less ideal for users with high-performance needs.
QLC shines in media storage, offering plenty of room for large files like videos and photos at a lower price. It’s perfect for backups or casual storage needs, where speed isn’t as critical. If you’re doing lighter tasks or just need storage for everyday files, QLC is a solid choice.

Performance Benchmarks

TLC drives typically offer write speeds of around 500–550 MB/s. These speeds make TLC suitable for gaming, video editing, and handling large files easily.
QLC drives are generally slower, with write speeds between 300 and 500 MB/s. While this is slower, it’s fine for everyday tasks like file storage or light editing. However, frequent large file writes could slow things down. For users prioritizing heavy writes or long-term reliability, TLC is better. But for those who need bulk storage on a budget, QLC still delivers.

Future of NAND Flash

As storage demands rise, the NAND flash industry is adapting quickly. QLC (Quad-Level Cell) is gaining traction, with improved speed, durability, and efficiency shaping its future in the consumer market.
One advancement is 3D NAND stacking. This technology increases storage capacity while improving efficiency and lifespan by stacking memory cells vertically. The stacked structure reduces wear on cells during read/write operations, helping extend the life of devices like SSDs and microSD cards.
3D NAND stacking enables QLC to offer larger capacities without compromising performance. Additionally, better wear leveling and error correction algorithms are helping close the gap between QLC and TLC (Triple-Level Cell), making QLC a solid choice for budget-conscious consumers.

Final Words

The right option depends on your needs.

  • Choose TLC for reliable, long-lasting performance and faster speeds for tasks like gaming or video editing.
  • QLC is a good budget option if you need a lot of storage. It’s slower and not as durable, but it’s enough for tasks like archiving or media storage.

Factor

TLC (Triple-Level Cell)

QLC (Quad-Level Cell)

Cost

Higher, but offers better performance and durability.

More affordable, ideal for large storage needs.

Lifespan

Longer lifespan, good for frequent write-heavy tasks.

Shorter lifespan, not ideal for high-write environments.

Speed

Faster read and write speeds, suitable for performance tasks.

Slower performance, better for light read/write use.

Storage Capacity

Lower storage density compared to QLC.

Higher storage density, great for large capacity needs.

Best For

Gaming, video editing, OS drives, and frequent data writes.

Backups, media storage, and light usage.

Understanding Micro SD Card A1 and A2

What Is Micro SD A1 vs A2 Card?

External storage is essential for many devices, and selecting the appropriate Micro SD card can impact performance. The A1 and A2 ratings determine how well your device handles apps and large files. This write-up breaks down A1 vs. A2 to help you pick the right card.

Understanding Micro SD Card A1 and A2

Micro SD Cards: An Overview

Micro SD cards are small but powerful storage tools for many devices. Phones, cameras, and gaming systems all use them to hold everything from apps to photos. The right card can boost your device’s performance, especially when managing large files or heavy apps.

What Do A1 and A2 Ratings Mean?

The A1 and A2 ratings are helpful when selecting a Micro SD card, especially for app usage. These labels come from the App Performance Class, which measures a card’s ability to read and write data efficiently.

  • A1 cards are designed with 1500 read IOPS and 500 write IOPS, handling basic tasks like media storage and running lighter apps smoothly.
  • A2-rated cards offer more power with 4000 random read IOPS and 2000 random write IOPS, making them a better fit for more complex apps and multitasking, especially in smartphones and gaming devices.

Why A1 and A2 Ratings Matter?

A1 and A2 ratings are key to your device’s performance, particularly in how it handles apps and data transfers. If you’re using your card for simple storage like photos and videos, an A1 card should work just fine.However, if you plan on running apps, especially on powerful devices, A2 cards offer faster speeds. This results in quicker app launches, improved data transfer, and better overall performance.

Micro SD A1 vs A2: A Comparison

Understanding Micro SD Card A1 and A2

Performance: Speed and Efficiency

A1 cards are built for basic functions, offering 1500 IOPS for reading and 500 IOPS for writing. These speeds are enough for light tasks like running apps and saving smaller files.

A2 cards, however, provide a major upgrade, with 4000 IOPS for reads and 2000 IOPS for writes. These faster speeds make A2 cards ideal for tasks that require quick data handling, such as running larger apps, managing bigger files, and streaming 4K videos.

A2 cards will noticeably improve performance, especially for activities like video editing or gaming, where speed is crucial.

Use Cases: Casual vs. Power Users

How you use your SD card matters when choosing between A1 and A2. Here’s how each one suits different users:

  • Casual Users: If you’re just storing media like photos or music, an A1 card should work well. It handles everyday use fine, but for large apps or demanding games, you might notice slower performance.
  • Power Users: If you’re into gaming, content creation, or managing large files, go for an A2 card. Its faster speeds make it ideal for 4K video editing, running apps without delay, and handling heavy tasks like multitasking.

Cost: Is A2 Card Worth the Extra Money?

The price gap between A2 and A1 cards is generally low. Whether an A2 is worth the extra cost really depends on your usage.

  • Casual users: An A1 card will be sufficient for storing music, photos, or simple files. No need to spend more on an A2 unless faster speeds are necessary.
  • Power users: For those who deal with large files, gaming, or video editing, A2’s speed can save time and improve performance. In such cases, the extra cost can be a wise investment.

Which Products Use A1 and A2 Micro SD Cards?

Each rating is optimized for specific tasks, so knowing what your device needs will guide your choice.

Micro SD A1 VS A2 Devices for A1 Cards

A1 cards are designed for basic tasks. They’re perfect for simple storage and light use where speed doesn’t matter much. You’ll find them in devices like:

  • Smartphones: If your phone is mainly for calls, texting, and casual browsing, an A1 card works just fine. It doesn’t need the faster speed of A2.
  • Tablets: A1 cards are ideal for light browsing, watching videos, or checking emails. They offer enough storage without needing extra speed.
  • Digital Cameras: A1 cards handle photos and HD video well. They’re perfect for standard-resolution images, but if you need to record 4K video, a faster card is better.

Micro SD A1 VS A2 Devices for A2 Cards

A2 cards are built for devices requiring fast speeds, whether for gaming, apps, or handling large files. Their high read and write speeds are crucial for smooth operation. A2 cards work best for:

  • Smartphones: Phones running heavy apps or recording 4K video need A2 cards to keep up with the demands.
  • Gaming Consoles: Devices like the Nintendo Switch use A2 cards to load games faster and avoid interruptions during gameplay.
  • Drones: When drones shoot 4K video, A2 cards help manage large file sizes and keep everything running smoothly.
  • Action Cameras: Cameras like GoPros that record in high resolutions need A2 cards to ensure smooth file transfers and steady video.

Which One Do You Need?

The decision between A1 and A2 comes down to your device’s workload.
For lighter activities such as storing photos or watching videos, an A1 card is more than enough. It balances cost and performance for basic tasks.
If you’re into gaming, video editing, or using fast apps, A2 cards will be the better option. They offer superior speed and performance for heavy-duty use.

Pros and Cons of Micro SD A1 or A2 Cards

Before picking an A1 or A2-rated Micro SD card, consider the trade-offs each one brings.

Advantages

  • A1 and A2 cards both help apps run faster and make data access smoother. Whether you’re using games or productivity apps, the difference in speed is noticeable. Apps load quicker, and data handling is more efficient.
  • A2 cards are a better choice for devices that need fast data processing, like drones or gaming consoles. These cards have superior read/write speeds, making them ideal for tasks like 4K video recording or using large apps. A1 cards still offer a speed boost compared to regular SD cards but are better suited for everyday devices.

Disadvantages

  • A2 cards come with a higher price tag. For basic tasks like storing photos or videos, an A1 card is more than enough. Unless you’re using demanding apps or recording high-quality videos, the extra cost of an A2 card might not be worth it.
  • A2 cards require a device that can take full advantage of their speed. Older devices may not get the performance boost, leaving you with a card that doesn’t deliver on its potential. If your device doesn’t need the extra speed, an A2 card might be overkill.

Conclusion

Feature

A1 Micro SD Card

A2 Micro SD Card

Read Speed

Minimum 10MB/s

Minimum 10MB/s

Write Speed

Minimum 10MB/s

Minimum 30MB/s

App Performance

Good for light apps and media storage

Optimized for faster app performance and heavy media usage

Use Case

Basic smartphones, tablets, cameras

High-end smartphones, gaming consoles, drones, 4K video recording

Price

More affordable

Higher cost due to superior performance

Best For

Casual users and everyday tasks

Power users, needing faster performance for apps and media

Compatibility

Works well with most devices

May not be compatible with older devices

Consider your specific needs when selecting between A1 and A2 cards. If you just need storage for documents or pictures, an A1 card is sufficient. But if you’re dealing with high-performance tasks like gaming or 4K recording, go for an A2 card. The higher cost brings faster speeds.

A1 VS A2 SD card different

A1 VS A2 SD card: How to make decision on purchase?

Bulk memory cards are being portable storage options for years. No matter Micro SD card or SD card, both of them offer additional storage for devices. To use them properly, SD association has launched the standard of speed class, capacity, and system format for reference. Therefore, users can select the right card for DSLR cameras, drones, dash cam, smartphones, and the other equipment. Since people expect fast response and loading process of storage media, the category of memory cards has new version. The latest speed class has A1 and A2, which belongs to application performance class. If we do a thorough comparison on A1 VS A2 SD card, the difference and similarity of them will be clear.

Application Speed class

Application speed class is a new specification to measure the performance of launching and running Apps. Not only can SD card store maps, documents, photos, or movies, but also it can load applications and related data.

Therefore, users expect SD or Micro SD card work in a combination of random and sequential performance levels. As if the smartphones or the other equipment does not have enough internal storage, the application will fail to work properly. Thus, the demand of application memory gets stronger.

This new standard of A1 and A 2 separately conforms to SD 5.1 and SD 6.0, which provides efficient memory management. Memory cards in this specification can guarantee a faster transfer and stable running on Apps. Let’s start a detailed introduction on A1 VS A2 SD card.

A1 VS A2 SD card – Difference

The full name of A1 is Application performance class 1, A2 will be class 2 instead (An upgrade version). This speciation is applied to Micro SD and SD card, so both have this speed version. However, the speed under A1 or A2 is different from regular class, which focus on random speed.

A1 VS A2 SD card different

Random speed

  1. A1 Random speed
    • Minimum read speed: 1500 IOPS (inputs/outputs per second)
    • Minimum write speed: 500 IOPS
    • Minimum Sequential speed: 10 MB/s
  2. A2 Random speed
    • Minimum read speed: 4000 IOPS
    • Minimum write speed: 2000 IOPS
    • Minimum Sequential speed: 10 MB/s

Obviously, the key difference between A1 and A2 SD Card is speed, A2 version is a bit faster. In addition, the cost of A2 SD card is much expensive. For instance, If the budget is limited, A1 SD card is still a good option and offers good performance in Raspberry pi or camera.

In fact, bulk memory card has various speed standards, A1 and A2 are the key one to enhance app performance. Thus, if you expect a smooth use on your android phones, Nintendo switch, or the other devices, you’d better consider A1 and A2 types.

Application

  1. A1 Application
    • Can store and capture hours of Full HD video
    • A1 Micro SD is good for Android smartphones and tablets
  2. A2 Application

    • Can do perfect loading of high-res photos and 4K UHD videos
    • A2 SD card is deal for high-end devices like DSLR cameras
Application Performance Class Specifcation Table
Application Performance Class Pictograph Minimum Random Read Minimum Random Write Minimum Sustained Sequential Write
Class 1 (A1) A1 1500 1OPS 500 1OPS 10MBytes/sec
Class 2 (A2) A2 4000 1OPS 2000 IOPS 10MBytes/sec

Things about A1 VS A2 SD card

First of all, we have to understand cards in this rating. A1 and A2 tell the application performance, thus, it will not matter if you use SD cards not to load Apps.

For example, you use the equipment only for shooting or saving photos and videos, the key part must be minimum sequential write speed. Then the selection of A1 and A2 will be useless, you’d better switch it to V30 or UHS-3. Luckily, most SD card and micro-SD card all carry multi specs such as UHS, V90, and class speed. Therefore, you need to understand the use of devices before ordering A1 or A 2 cards.

In contrast, if you need SD card in tablets, phones, or gaming console to load games or apps. Bulk memory cards in A1 or A2 version will be an important standard. As the apps has a different way of occupying memory space, which will write lots of small chunks of data instead of a stream of sequential data. Even you choose the fastest SD card in U3 or V90, this is not beneficial to those devices.

Is A rating better than V and U speed class?

No, not really. In fact, they are a parallel rating system. Each of them is an independent system, therefore, A1 or A2 cannot replace V and U speed class.

However, one SD or Micro SD card can carry both the A1 and U3 rating or an A2 as well as V60 rating. These parameters are referring to different things, which has own advantages.

How is the link between A rating and capacity?

There is no direct affect amog A1, A2 ratings and capacity. As SD cards in different capacity may offer same speeds, the speed performance relates to its inside chips. Thus, you can find bulk SD card 16GB with A1, also can get 32GB Micro SD card with A1.

Final thoughts on A1 VS A2 SD card

A rating develops a unique speed standard, it tells input-output access per second. With the special measurement on speed, A1 or A2 SD card can perfectly support apps running. In addition, it has a minimum requirement for sequential write. It is 10MB/s same as class 10. However, it is too slow for high-end cameras. The key factor to consider is if we need run on apps on SD cards, then we can make right purchase.

What is a micro sd adapter?

Most electronic gadgets are using digital media to store data. For instance, people will use smartphones, cameras, or drones to take photos and videos. In fact, these devices normally use memory cards to load data. Therefore, memory card is a perfect media to expand the storage capacity of the devices. Micro SD card is the smallest type, you can easily use it to do file transfer or data backup. However, the memory card family has various types, how can we use Micro SD in SD card slot or USB port? The Micro SD adapter plays an important role on transforming Micro SD into various types.

What is Micro SD card?

One of the smallest portable storages is Micro SD card. The physical size is 15*11mm only, the first launch of it is in 2005. People widely use it in smartphones, tablets, toys, Bluetooth speakers and the other electronical devices. The presence of Micro SD caters for the limited space in the equipment, also, it can slip into an existing SD card slot with Micro SD adapter. Let’s take a deep tour on Micro SD firstly.

Form Factor Capacity
SD Custom Sticker Size: 20x25mm (mm)  / 0.78 x 0.98  inches SD SDHC SDXC SXUC
up to 2gb >2gb to 32gb >32gb to 2tb 2tb to 128tb
Microsd print area(15*11*1 (mm)  / 0.04 x 0.59 x 0.43 inches)        
Write Speed >2-6mb Write Speed >10-20mb Write Speed >20-90mb Write Speed >90mb

The Type of Micro SD card

  • Micro SD – the basic type is available from 128MB to 2GB
  • Micro SDHC – it represents high capacity of Micro SD, the capacity supports from 4GB to 32GB
  • Micro SDXC – it refers to Micro Secure digital extreme capacity, the density can hold between 32GB and 2TB

Speed class

  • Class grade – there are three ratings within the Class. Class 4 tells the minimum write speed of 4MB/s. Therefore, Class 6 and class 10 indicate the minimum write speed at 6MB/s and 10MB/s
  • UHS rating – this is ultra-high speed class. The main rating of it is U1 and U3, the write speed is 10MB/s and 30MB/s at least.
  • Video speed class – this feature represents higher video resolution. The micro-SD cards wearing this standard can support and capture 4k or higher resolution videos. V30, V60 and V90 are the main types.

What is Micro SD adapter?

This adapter is a device to read Micro SD in computer, tablets, cameras, or the other equipment. The main function of it is to use Micro SD card in electronic gadgets without Micro SD slot. In fact, people love buying multi-functional products, the best sale always belongs to them. Therefore, memory card adapter is to provide these extra works at lower cost. For example, you need to upload 1080p photos from your Micro SD card to laptop. The fastest way is to connect this media card with laptop, however, there are only USB ports there. How can we resolve it? Obviously, Micro Sd reader can help you out.Besides it, this adapter accessory is cost effective. Users may purchase various types of memory cards or USB sticks for wholesale order, as they need them to cater for different devices. However, it is inconvenient to bring so many kinds of memory media in one time. Thus, the presence of card adapter delivers portability and low cost.

The types of Micro SD adapter

There are three kinds of adapters.

  • Micro SD to SD adapter
  • Micro SD to USB drive reader
  • Micro SD to Type C reader

The most famous one is the SD shape adapter, no matter the size or design is fully same as standard SD card. As most cameras are using SD card for storing photos and videos, this adapter can turn Micro SD into SD Card at once. When using this adapter, you need pay attention to the contact points, it will work functionally after correct connection.


Next one is USB drive reader. This is designed for the devices with USB port but no Micro SD slot. As if you need to read Micro SD in laptop or PC, this adapter will be a perfect choice. The function is same as standard USB drive, which supports plug and play.
USB 3.0 Card reader
The latest one is Card reader for Typec. In other words, we can call it as OTG USB reader. People can use it to connect with tablet, smartphone and the other equipment with Typec port. In fact, this accessory offers a data bridge between Micro SD and phones.

How to make good purchase on Micro SD adapter?

This accessory is easily found in market. However, the quality is hard to judge. Therefore, the source of purchasing reliable adapter is the key.

  • Brand supplier – Sandisk, Toshiba, Samsung
  • OEM Factory with stable supply
  • Online wholesaler with long warranty

Firstly, ordering with brand supplier or OEM factory MRT is a way to avoid any frauds. Also, sample orders are necessary prior to any big orders, you can test the contact part that will affect the function directly.Furthermore, there are many online wholesale stores for memory card accessory. MRT memory store is a trustable supplier, which has own production line and QC team. In addition, most of the products can support 5 years warranty. After sales service is the most valuable consideration for final purchase. All in all, price is important for a good purchase, but the quality and service are a foundation of long-term cooperation.

Final thoughts

No matter you need Micro SD adapter in SD style or USB stick, this small gadget helps Micro SD card achieve a perfect transformation. As if you are in low budget, this accessory definitely is a nice option to bring you multi functions.

0
Back to Top
Product has been added to your cart